Ranks for baire multifunctions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks on the Baire Class Ξ Functions

In 1990 Kechris and Louveau developed the theory of three very natural ranks on the Baire class 1 functions. A rank is a function assigning countable ordinals to certain objects, typically measuring their complexity. We extend this theory to the case of Baire class ξ functions, and generalize most of the results from the Baire class 1 case. We also show that their assumption of the compactness ...

متن کامل

Regularity estimates for convex multifunctions

The main result of the paper contains an exact formula for the rate of regularity of a set-valued mapping with a convex graph. As a consequence we find an exact expression for the rate of regularity of a set-valued mapping associated with so called constraint system. It turns out that the rate is equal to the upper bound of Robinson-type estimates over all norms in the graph space of the homoge...

متن کامل

Baire Reflection

We study reflection principles involving nonmeager sets and the Baire Property which are consequences of the generic supercompactness of ω2, such as the principle asserting that any point countable Baire space has a stationary set of closed subspaces of weight ω1 which are also Baire spaces. These principles entail the analogous principles of stationary reflection but are incompatible with forc...

متن کامل

Baire Category for Monotone Sets

We study Baire category for downward-closed subsets of 2ω , showing that it behaves better in this context than for general subsets of 2ω . We show that, in the downward-closed context, the ideal of meager sets is prime and b-complete, while the complementary filter is g-complete. We also discuss other cardinal characteristics of this ideal and this filter, and we show that analogous results fo...

متن کامل

Hahn-Banach extension theorems for multifunctions revisited

Several generalizations of the Hahn–Banach extension theorem to K-convex multifunctions were stated recently in the literature. In this note we provide an easy direct proof for the multifunction version of the Hahn–Banach–Kantorovich theorem and show that in a quite general situation it can be obtained from existing results. Then we derive the Yang extension theorem using a similar proof as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2003

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm95-1-6